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( FOREWORD

\

t7;he free electron laser instability for a solid relativistic electron beam

propagating in combined transverse helical wiggler and uniform axial guide

fields is investigated within the framework of the linearized Vlasov-Maxwell
equations. \43Ll§uEEEET99,EBEt v/yb <<1, where v is Budker's parameter and
vbmcz is the electron energy. “Stability properties are investigated for the
choice of equalibrium distribution function in which all electrons have the
same value of the linear combination of transverse and helical invariants./

C, - 2ypmwpCy = const., and a Lorentzian distribution in the ax1a1 1uyaF(;nt C,.

b S e N R < S A e i S i

(Here w, is a constant.) “The instability growth rate is calculated including a
determination of the optimum value of the ratio of beam radius to conducting
wall rad1us\U§pHLJnfor maximum growth. It is found that the maximum growth
rate for a solid electron beam is comparable to that for a hollow beam with
similar parameters. Moreover, the introduction of a small axial momentum spread
: réﬁfvsmc~m—a*fEW“ﬁé?cenég7significant]y reduces the instability growth rate. N
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1. INTRODUCTION

1-9 Las been

In recent years, the free electron laser instability
extensively investigated with particular emphasis on applications
to intense microwave generation. For the most part, previous theoretical
analyses of this instability have been carried out either for uniform

density beams3-6 with infinite transverse dimension, or for annular

electron beams. The present paper examines the influence of finite
radial geometry on the free electron laser instability for a solid
electron beam propagating in combined transverse helical wigglér and
uniform axial guide fields. The analysis is carried out within the
framework of the linearized Vlasov-Maxwell equations, including a
determination of the optimum value of beam radius RO for maximum
growth rate.

The present analysis is carried out for an infinitely long relativ-

istic electron beam propagating in the combined transverse wiggler and

uniform axial guide fields described by Eq. (1). Equilibrium and stability

properties are calculated for the specific choice of electron distribution

function [Eq. (5)],
f°=29<c 2 ¢, - 2y,mT,)6(C.)
b "7 64 dvpmuph A\ 1)6(C)
where Ng» W Ypr and ix are positive consianCS, Cy» Ch’ and Cz are
the transverse, helical, and axial 1nvatiantslo defined in Eqs.
(6) - (8), and the axial distribution function is normalized according
to [° dc,G(C,) = 1. Equilibrium properties are investigated in Sec. II,
-
and stability properties are examined in Secs. III and IV, assuming
that v/yb <« 1, where v is Budker's parameter, ybmc2 is the characteristic

electron energy, and m is the electron rest mass.
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In Sec. 111, making use of the linearized Vlasov-Maxwell equations,
we obtain the coupled eigenvalue equations (33), (37), (40), (45), and
(46) that describe free electron laser stability properties in
circumstances where the perturbed transverse fields can be approximated
by the vacuum waveguide fields. For short wavelength perturbations,

the axial component of the perturbed longitudinal field can be approximated
by [Eq. (49)],

-

¢

Jp(By g0 T/R) s O sx <Ry,

E:nz(t) _ L,s
’ o , othervise ,

where Jl(x) is the Bessel function of the first kind of order ¢,

' - .
Bl,s' is the s'th zero of Jl(el,s') 0 and °l,s' is a constant. In

Sec. 1V, substituting Eq. (49) into the coupled eigenvalue equations,
we obtain closed algebraic dispersion relations for che transverse
electric (TE) and transverse magnetic (TM) polarizatioms.

Introducing the normalized dimensionless function [Eq. (59)],

2
Jz(x)
2 2

2
Gls'(x) = 451 s’
z,s')

A
it is shown in Sec. IV that the coupling between the longitudinal and
transverse perturbations 1s proportional to Ggs'(“z+1,sR0/Rc)

for the TE mode, and to Gls,(s ROIRC) for the ™ mode. Here

i+l,s

%otl.s o+1(@g41,g) = O and Jn+1(sz+1,s) =0

respectively, Rc is the radius of the outer conducting wall, and the prime

L]
and 6£+1,s are the sth zeroes of J

denotes (d/dx)Jl(x). Assuming that the maximum of the function Gls,(x)
occurs at x = X gt ve note that the maximum instatility growth rate

occurs at a value of RO/Rc given by ROIRc = xzs"“g+1.s for the TE

mode, and by RO/Rc = for the TM mode. This result is

Xs'/Bei1,s

different from that obtained for a hollow electron beam.8

—
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A detailed numerical analysis of the TE mode [Eq. (62)) and ™
mode [Eq. (63)] dispersion relations is presented in Sec. IV. Two
features are noteworthy from the numerical analysis. First, for the optimized
value of RO/RC' the instability growth rate for the TM mode is comparable
to that for the TE mode. Moreover, the growth rate is reduced substantially

by introducing a small amount of axial momentum spread (A/mec ~ 0.01).

9/10
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I1. EOUILIBRIUM TIEORY AND BASIC ASSLMPTIONS

The equilibrium configuration consists of a relativistic electron
beam propagating in the combined transverse wiggler and uniform axial

guide fields described by

0 - - "
g = -§Bcos(8 - koz)gr + &bsin(e - koz)s6 + 80%2 , (1)

where Bo and 6B are constants, and kg is tihe axial wavenumber of the
helical wiggler field. 1n Eq. (1), cylindrical polar coordinates (r,6,z)
are used, with z-axis along the propagation direction, and £, ge and e,
are unit vectors in the r-, 6-, and z-directions, respectively. In

the present analysis, we assume that the axial wavenumber of the helical

wiggler field is sufficiently large that

“c iw' «
N B kol ¢
]wo ~ wcl BO' 0 )

where wy © kovb, w, = eBO/mec is the electron cyclotron frequency,

2 .
RO is the characteristic beam radius, Ypme is the characteristic

2
electron energy, c is the speed of light in vacuo, vy = C(yi - 1)1/ /Yb

is the mean axial velocity of the electron beam, and -e and m are the
electron charge and rest mass, respectively.

It is also assumed that
V/Yb << lv (3)
2 2 .
where y = Npe /mc” is Budker's parameter,

2n Rc 0

N = de dr r n, (r, 6 - k,2z) , (&)

b b 0
0 0

is the number of electrons per unit axial length of the beam, ng(r, 6~ koz)

is the equilibrium electron density, and R. is the radius of the conducting

wall. The inequality in Lq. (3) indicates that the beam is very tenuous,

1"

e i i 1

s P 2nn -
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and the perturbed electromagnetic fields, to lowest order, are approximated
by the vacuum waveguide fields.8 Consistent with the low-density
9 assumption in Eq. (3), we also neglect the influence of the (weak)

equllibrium self-electric and self-magnetic fields associated with the

lack of equilibrium charge and current neutrality.12

For present purposes, we assume an equilibrium distribution
3 function of the formlo

! o_"o :
fb = ;—-G(Cl - 2mewbch - ZmeTL)G(Cz) . (5)

where n,, w,, and T, are positive constants, and C,, and C_ are the
0 b 1 p 2 » z

three single-particle constants of motion defined bylo

2 2eBg :
Ch=p + P, + 'cro— (p, = vymV))
i (6)
5 2e8B 2e65 .
T prcos(e - koz) + oK p651n(6 - koz) s
0 0
1 edB
Ch = Pe + ko (pz meVb) + cko rsin(o koz) R (7
and
2 2
) Y
z cko L ck0
(8)
2edB 2esB .
+ oK prcos(e - koz) ok pssln(e koz)
0 0
The axial distribution function is normalized according to
f; dcG(c) =1 . 9)

In Eqs. (6) - (8), p= (Prs Py pz) = vy is the mechanical momentum,

! P = r(pe - eBOr/2c) is the canonical angular momentum associated with

8
2 4 ZRF)1/2

the axial field BO' and vmcz = (m°c +c is the relativistic

electron energy.

12
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In the parameter regimes of practical interest for free electron
laser applications, the axial distribution function G(Cz) is strongly
peaked about Cz = ybmvb = const., with characteristic half-width

ACz << ybmvb. Moreover, in the present analysis, 1t is also assumed

that the axial motion 1is nonresonant with
v: ¢ wz (10)

where v, = pzlym is the axial velocity of a typical beam electron.

We therefore approximate Eq. (8) bylo

w 8B
c
Cz =P, + (wo — ”C)Bo [prcos(e - koz) - pesin(e - koz)].

(11)
Making use of Eqs. (6), (7), and (11), it is straightforward

0
to show that the combination C; - Zybmubuh n Eq. (5) can be expressed ast

esBf“0 " %
C, - Zmewah (pt - Cko P )cos(e koz)]

2
esBfY T %

+ yimzwo(r, g - koz) ,

where wy = kovb' w, = eBolybmc, and the effective potential wo(r, 8 - kUz)

is defined by

2, 2 “e " “Bp\r B _. _
Vp(rs 0 = kg2) = (wyu, = wpdr + 2ucuy (wo - ) i sin(e - ky2)
c 0
wy - 2 w2 2 - @
_( 0" %) Yoy, zm<“c %)Vb“,'vb““.’a)-
“o T Y%/ u By b uwp

As a simple example, we consjder an axial distribution function

in which all electrons have a same value of Cz, f.e.,

13
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G(Cz) = 6(Cz - mevb) . (14)

After some straightforward algebraic manipulation that makes use of
Eqs. (5), (12), and (14), it can readily be shown that the lowest-
order (azimuthally symmetric) electron density profile described by

Eqs. (5) and (14) can be approximated bylo

np(r) = 0 (15)

where the mean radius R, is defined by

- 0 2 2
2TL+(w0 mb)ig(g)sz
Y. m Wy —~ 2\B b
2 b 0 ¢ 0
’ - > : (16)
(wbwc - mb)

and use has been made of Eq. (2). Additional general equilibrium
properties assvciated with the Jistribution function in Eq. (5),

including helical distortions of the beam equilibrium for finite GB/BO,

are discussed in Ref. 10.

14
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I11. LINEARIZED VLASOV-MAXWELL EQUATIONS FOR A TENUOUS BEAM

In this section, we make use of the linearized Vlasov-Maxwell
equations to investigate the free electron laser stability properties
of a relativistic solid electron beam described by the equilibrium
distribution function in Eq. (5). We adopt a normal-mode approach in
which all perturbations are assumed to vary with time and space

according to

-~ (n)

6w(¥,t) = wl (r)exp{i[26 + (k + nko)z - wt]} , (17)

£,n
where lmw > 0. Here, w is the complex eigenfrequency k*-nko is the

axial wavenumber, and £ and n are integers. Moreover, it is also assumed

that the perturbations are close to resonance with

w_ o, (18)

lw - (k + nko)vbl << wgy W

where wy = kovb and w, = eBO/ybmc.
The Maxwell equations for the perturbed electric and magnetic field

amplitudes can be expressed as

g % E@ = 1(w/0B ,

19)
Y xBO = /)]G - 1W/oER) ,
where
10 = e [ dry faep 20)
is the perturbed current density. In Eq. (20),
Eb(k’g) - e[fn dt exp(-iwt)[%(¥') + Kl—:z§£§:z- . %ET fg R (21)

15
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is the perturbed distribution function, 1 = t' - t, and the particle
trajectories K‘(t') and Q'(t') satisfy d{'/dt' = x' and dg'/dt' - -ex' x Eo/c.
: ”" e : " 1 1] = = L] = -
with "initial" conditions x'(t t) = x and X'(t t) = y.
Within the context of Eqs. (3) and (18), the perturbed distribution

function in Eq. (21) can be approximated by

£ ( )-—Eod (~iwt){2|ymiv(y' - E
bR " J_» 1 exp(-iwt lew(x E)

(22)
- - 340, RIS W
Pz(X 3z E)] Zfb ( 3z E)3 }'
Ip,
2.2.1/2
where y = (1 + R /m ¢) , and use has been made of Eq. (19). To lowest
order, the axial motion of an electron is free-streaming withlo
Py
z'' =z +—= (t' -¢t) . (23)

ym

Moreover, within the context of Eq. (18), on the right-hand side of

Eq. (22) we retain contributions to v; and v! in the orbit integral of

]
the form8
w
. c 4B - -
VeV, oo o B cos (6 koz kov 1), 24)
0 0
and
Ye SB
LI ——— ——_ ] - -
Ve = V.o - o B sin(® - kgz kovzr) . (25)
0 c 0

Finally, since the oscillatory modulation of the radial and azimuthal

orbits is small amplitude [Eq. (2)], we approximate

r*=r, 6' =96, (26)

in the arguments of the perturbation amplitudes on the right-hand side of

Eq. (22).

16
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- :d

Substituting Eqs. (23) - (26) into Eq. (22), we obtain the perturbed

distribution function

f (X'E) = Z f( )exp{ille + (k + nko)z])
R' |
. dec E exp{i{£3;+ (k + nko)z]) \ 8 [(“)(t) .. 5B wo |
® 9a w- (k + nko)vz nz z,t ZYWCZkD 0~ % \
(n+1) (n+1) ~(n-1) - (n-1)
{ n+1(Br, g- 1(’) + 1Ee g1+ A (B g (7))~ 1Eg z+1(')]}
27)
wiere the function An.(B,m,k) is defined by
N a£)
A .(R wy,k) = 2[ymw - (k + n'k )p ] 3 + (k+n ko) e (28)
opy P,

and 8, = vz/c. In Eq. (27), the term proportional to A, is the
longitudinal portion of the perturbed distribution function.

Similarly, the terms proportional to X and An—l in Eq. (27) are the

n+l
transverse electromagnetic portions of the perturbed distribution function.
Consistent with Eq. (18), the eigenfrequency w can be approximated

by w = (k + nkO)vb' We therefore approximate wzlcz - (k + nko + ko)2

2,2 2 k + ““o)2 2
w/e” - (k + nkg + ko) = -~ 72 + 2k0(k + nko) + kO <0,
b 7

(29)
for k + nk0 > 0. Evidently, Eq. (29) indicates that the n + 1 mode in

Eq. (27) is a non-propagating wave in a vacuum waveguide. Without loss

of generality, for a tenuous beam, we therefore assume

(n 1)

BN - £ w0, (30)

8 2-1

in the subsequent analysis. Making use of Eq. (30), fb({,g) in Eq. (27)

can then be expressed as

17




NSWC TR 81-145

[ fGp) = 558 exp{:[fe& f",,loitf"” {*nﬂzﬂﬁni‘”
(31)
i B0 - 5D}
where the dimensionless parameter A is defined by
A = — 8B “o ) (32)

- W

2 w
2ybmc ko 0 c
and use has been made of the approximation y = Yy which is consistent

( with Eq. (18).
. From Poisson's equation, Z . é(ﬁ) = 4np(¥). and the
Maxwell equation (19), we obtain the differential equation,

2 4ni(k + nk )

| 2 -

‘ [V; + %5 - (k + nk )] (“)(r) —~—2———- (“)(r) , (33)

c Yy
for the axial (longitudinal) romponent of the perturbed eleciric

2(n) ~(n) (n)

i field Ez 2 In Eq. (33), Py is the perturbed charge
’

(r) = —e[d pf

density, Vz 5 r_l(alar)(ralar) -2 /r , and use has been made of 32“:(:) =

bp(n)(r) In the tenuous beam limit [Eq. (3)], the transverse field

components Ei";ii

(r) in Eq. (31) can be approximated by the vacuum
waveguide fields.8 In this context, the present stability analysis
utilizes the vacuum transverse electric (TE) and transverse magnetic

(™M) waveguide modes as a convenient basis to represent the general

electromagnetic field perturbation Ef‘lii(r), which is determined fromll
wz 2i{%(n-1)
2 (k + nky - ko)™ 1Ry gy GO

(34)

) (n -1)
Yz B -1

Making use of Eqs. (19) and (34), and neglecting the perturbed

current density, the vacuum waveguide fields can be expressed as
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(n-1) -
Bz 2417 Pre1,st01O@p 41, TR
(35)
R
(n 1) (n-l) - “Fe
B aa1(™ - iy a1 (0 =Y bpe1, sty (agyy,sT/R) »
for the TE mode, and
(n 1) i
Ea (o) = ©o+1,s7+1 Bpa1, /R
(36)
(k + nk, - k)R
;(n-1) - (n-1) 0~ %o’k
Eae1 (™) - By, a1 (7 = 1 Brel s Co41,87¢ Bpyq gT/R) >

for the TM mode. 1In Eqs. (35) and (36), b and €¢+1. 5 4T€ constants,
»

£+1,s

J +(x) is the Bessel function of first kind of order 2', and «

L+1,s
and Bz+l,s are the sth roots of J2+1(°z+l s) = 0 and J2+1(B s) = 0,
respectively. Here the prime (') denotes J' (x) = (d/dx)J (x).

Atte: sowe straightforward dlyebraic wmanipulation of Egs. (19), (35), and

(36), it can be shown that

2
2 a a r
w 2 2+1,s 2+1,s
{ U ]bz+1,s31+1( )

c 0 & Re ;
< (37) ‘
LI IS | 2 (n-1) i
c Jot [Fg,041 @) - 11+ D3 W0 :
for the TE mode, and ,
[2 (+ ne. - 12 ei+1,s ( 2ttt z+1 Foa1,s” )
[ Z o TR T T2 st
€ (38)
- - (n-1) j-1)
Aﬂi[(k + nkg = kglpp (D) - o 41 >

for the TM mode. Moreover, making use of the continuity equation,

L(n~1) cky @D 18 o(n-l), i +1) S(n-1) !
TS UL N e S TR r el

(39)
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(n- 1)(r) . (n-1)

the approximation J 2+l b“l+1

(r) |consistent with Eq. (3)],
and approximating k + nko = kO/(l - Vb/c) on the right~hand side of

Eq. (38), we find that Eq. (38) can be expressed as
2

2 8
(PR . 2 _ Tatl,s _iilia_
[cz (k + nkg - k) o2 ] Co+l,s L% E_ )
©

(40)

e R i)

for the TM mode.
For convenience of notation in the subsequent analysis, we intro-

duce the effective susceptibility,

» y(pyw,k)
X _ 2 3 'R' »
n.(w.k) = 4me Jd P —F (k4 7K )v (41)

Mlorveover, to simplify the present analysis, we also assume that the
beam rotation is slow with

Wy << wer Wy (42)
Within the context of Eq. (42), we can show from Lq. (12) that the
equilibrium distribution function is an even function of

Pr - 2ybmcncos(e - koz) (43)
and

Pyt 2y, mcAsin(e - koz) , (44)

for the beam rotations satisfying wy << W, wge Making use of

Eqs. (31), (41), and (43), the perturbed charge and current densities

are given by

~(n-1)

) = e 45)

2
7(n-1) -
Je.n+1( r) = c (w.k r) 1.1

wiere the function G[(w,k,r) is defined by

20
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‘ Cl(w.k.t) = xn,nszﬁi?i(r)
. (46)
~(n-1) ~(n-1)
* My n-1 B, 1 (F) - 4T (0]

Equations (33), (37), and (40), when corbined with Lq. (45), constitute
one of the principal results of this paper and can be used to investigate
stability properties for a broad range of system parameters. Moreover,
in limiting cases, the dispersion relation for the free electron laser

! instability can be obtained in a closed form (Sec. IV).

= p——

B ar SR doan - i Sohil

T
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IV. FRELC LLECTRON LASER STAEILITY PROPEKRTIES

In this section, simplified expressions are obtained for the longi-
tudinal perturbations in Eq. (33),and the results are used to derive the
dispersion relation for several values of azimuthal harmonic number £.

The present analysis assumes short wavelength perturbations with
2 _ 2 2,2 .2
lajl = [+ nkd® = w/c™} >> /Ry . 47)

Moreover, for w = (k + nkO)Vb and k + nko = kO/(l - Vb/c), the inequality

in Eq. (47) can be expressed in the equivalent form,

22272
1+ Vb/c) kaORO >> 1, (48)

which is readily satisfied in the parameter regimes of present experimental
interest. As shown in Appendix A, for short wavelength perturbations
satisfying Eq. (48), the axial component of tne perturbed electric field
ﬁi?i(r) in Eq. (33) can be approximated by

¢ .s'Jl(Bl,s'r/RO) » 0 xro< Ro »

t (49)

0 -
* 0, otherwise .

: . , _ - .

In Eq. (49), Bl,s’ is tie s'th root of JI(GQ,S.) = 0, and wﬂ’s, is a
constant.

Substituting Eqs. (35) and (49) into Eq. (46), multiplying Eqs.
(33) and (37) by rJl(éz‘s.r/Ro) and rJi+1(u1+1,sr/Rc)' respectively,
and integrating fromr = O tor = Rc' we obtain two homogeneous equations
relating the perturbation amplitudes ol,s' and b2+l,s' For the TE
mode polarization, these are

2
8 ' B8 ' T
- c 1 2 £,8 2 L,s
0!,5'[2 drrO(Ro—r)(z &,n+qn+ 2 )Jl( R )
Yy RO 0
(50)
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. )

) (k+nk0)RcAb Rc i | (uuhsr)‘] (Ei,s'r) i
2 41,5 *n,n-1"e VTR e\ TR ’ !

!

!

and ybﬂﬂ.+1.s 0 ¢ 0
Re W2 2 "§+1 s 2 2 1%+1,87
— - . - 1 - 2 —_———
b9.+1,sjo dr r |75 = (k+ nky - k) 2+ %% o Pl =)
c R
¢ (51)
] 0 - R £ (34 a r i
£,8 c 2,5 t+l,s !
(R LR - —_—r — B
(k + nk Ry Mz,s'fo dr ré(R, ')Xn,ng( R, )Jz+1 R ) ’ i
¢ k|

wiere ®(x) is the leaviside step function defined by

1, x>0,
o(x) = (52)
o, otherwise .
Similarly, for the TM mode polarization, we obtain
2
R B ] g ' T
- c _ 1 2 2,8') 2 "2,s
¢Q,S'[ dr ¢ Q(RO r) 2 Xn,n to, 2 ) Jl( R )
0 Yy RO 0
(53)
(k + nk )R R L ¢ [ Yy
- _i 0" ¢ c Lrl,s 2,8
* 2, Megel,s Jo dr x Xn,n-l"z( R, )“’n( 7, )
ToPe4l,s
and 2
R 2 [ £ r
c w_ o oo y2 . tls 2 2 (ltl,s
Eevl,s j dr 717 = (k +nky ~ ko) 74 W o1 [Tl )
0 c R c
€ (54)
B ] R 3 ' T
2,8 - (o - £,S
i (k + nLO)R0 A¢£,s'fo dr r 0<R0 r)xn,nJ!HI( R0 )

£ 4
2+1l,s
* Jz+1( P )
[~
where use has been made of w = (k + “ko)vb and (k + nko) = kol(l - Vb/c).
In the present analysis, it is assumed that the axial distribution

function has the form

(Cz - mevb) + A

=4
G(Cz) T a

where 4 is the characteristic spread in c, about the mean value Cz = ybmvb.

24
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We further assume that the characteristic spread A is small in comparison

with ybmv Substituting Eqs. (5) and (55) into Eqs. (28) and (41),

b
we obtain the approximate expression

2 e y.2
w' = (k +nkg)(k + n'kg)e

4v
? T 05T <Ry
X , - YbRO [w=~- (k + nko)Vb + 1|k + nkolblybm] (56)
n,n o, Ro<t-<Rc ‘

In obtaining Eq. (56), use has been rade of La. (18). Making use of the
‘ definition of Budker's parameter in Eqs. (3) and (4), the term bv/beS
2 2 2 2
in Eq. (56) can also be expressed as AV/YbRo wpb/c , where wpb
4ﬂnoe2/ybm is the plasma frequency-squared.
The condition for a nontrivial solution to Eqs. (50) and (51)
is that the determinant of the coefficients ¢l,s' and le’S be equal

to zero. After some algebraic manipulation, we find that the TE mode

| dispersion relation can be expressed as

2 2
Jk + nky|a 2 a
- j — 9 e LA 52 7Y
[u (k + nko)Vb + i 3 < 5 (k + nko ko) 2 }
me (o4 RC
) 12
[k + nkolA ch
x w-(k+nk0)vb+i 3 -432
Yp® wRo
| 2
i 2 a ) a R 2
- 2 vc . _ _ftl,s E g+l,s 0 veC
W ["o“‘ +nkg - ko) - - 2 ) Qe R_ )4 33
Tbc S b0
i 2
; a R [k + nk_{a)
: 2+l,s 0| ! 0
B + Hlss,( = )lw = (K 4+ nkIV, + 4 ——e— J
me
a 2
[ R
. - M 241,80
' 4 3R2 HR.ss'( R ) ’ (57)
) v%0 .
. where the coupling coefficient Qiss'(°2+l sRO/Rc) is defined by *
] 2
G (x)
E o+l, '
Qpyqr (x) = 52 B : (58)
%4l " (2 +1) Jg+1(°1+1,s)

and the functions Gls,(x) and sts'(X) are defined by




l‘E.ss'(x) =

[w - (k + nko)Vb + i

In this regard, making use of Eq. (61), the TE mode dispersion relation

(57) can be approximated by

In a similar manner, from Eqs. (53) and (54), we obtain the

approximate TM mode dispersion relation,

2 2
a Ik + nk IA]
. Atl,s - (k ! i 0
3 w (k + nko)Vb + i 3m ]
c Yb
ok + e = K - “i+1,s E %341,sR0 )
0 nky -~ kg 2 Qs R :
¢ (62)
Bi+1 s [k + nkOlA\2 ]
- T8Ny - (k + nk, )V, 4 i ———————
2 0’ R
c b (63)

2 3
2+1,s| M
- - 1 - ——t —a
2 [ko(k + nky = k) 2 ]sts'( )
where the TK mode coupling coefficient Q:ss'(e
L ) =6, /3
iss' ts'

and the function Gvs'(x) is defired in Eq. (59).

NSWC TR 81-145

2 Ji‘“’
cls'(X) = 4845. ;—E—:—;3~——;§ (59)
X L,s'
Ji+1(x) =0,
C ) . (60)
s’

In Eq. (57), the subscript s and s' represent the radial mode numbers
of the transverse and longitudinal perturbations, respectively.
For small wiggler amplitude (1 << 1), we investigate free electron
laser stability properties for w and k + nkg near the simultaneous
zeros of the transverse dispersion relation, mz - (k + nko - ko)zc2 -

czlkz = 0, and the longitudinal dispersion relation

[k + nkOIA]2 e 2

A B %

=0. (61)

2

B, s%0

R Rc
c

2+1,sR0/Rc) is defined by

2

2 ) (64)

(El+1.s
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Figure 1 shows plots of Cis'(x) versus x obtained from Eq. (59)

for (a) 82'5, = 80,1 and (b) B!,s' =g Cxcept in the case

1,3

= 80,1’ the plots of Gl,s'(x) for arbitrary Bz,s' are similar

Bl,s'

to those for El - B in Fig. 1(b). As shown in Fig. 1(b), the

s' 1,3

¢ =
quantities G H Gls'(xls') and Xpgt denote the maximum value of

s’

st'(x) and the corresponding value of x for a specified el iy For
1]

example, in Fig. 1, (xl ‘e G° W) = (0, 0.69) for B2 & = 8 and
*

s £s 0,1
(xls' , G:s,) = (9.8, 0.064) for EE'S. = 81’3. Shown in Fip. 2 are
plots of (a) xls, and (b) the corresponding values of G:s' =

Gls'(xls' ) for several different values of the azimuthal and
radial mode numbers £ and s'. 1t is evident from Fig. 2(b) that
C:s. decreases rapidly with increasing values of the mode numbers ¢

and s'. Moreover, we note from Fig. 2(a) that X,qr €an be approximated by
X ¢+ =8 ¢y s' 1. (65)
In this regard, for s' ¥ 1, C:s' can be approximated by

¢ . - 32 '
Cost = Cpar By 0) = 36y (0)v 8" # 1. (66)

Shown in Fig. 3 are plots of (a) Qfss'/cgs' for the TE mode
and (b) Qfss'/czs' for the TM mode, obtained from Lqs. (58) and (64)
respectively. Note that the curves in Fig. 3 are independent of the

longitudinal radial mode number s'. Evidently, the values of QESS./G '

Ls

and Qfss./c , increase with increasing values of azimuthal and

s

transverse radial mode numbers, £ and s. After careful examination

of Eqs. (58) and (64), we find that the maximum coupling between the

transverse and longitudinal modes occurs for a value of RO/Rc given by




A
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x, /o ’ TE wode ,
Ry/R, = { '8 HHLs (67)
x!s'/81+1,s s ™ mode .
Equation (67) is valid only when Xogt S “£+l,s for the TE mode, and
X v < 8l+1.s for the TM mode. For Xogt > %osl,e (TE), or Xogt > 8“_1’B

(™), the maximum coupling occurs for RO/Rc = 1. The maximum coupling
coefficients corresponding to Eq. (67) can be determined from Figs. 2(b)
and 3. For example, for (2,s,s') = (3,2,1), we determine that the

maximum coupling coefficient and the corresponding ratio RO/Rc’ are

E
Lss

(1.83, 0.52) for the TM mode.

given by (Q;__+ Ry/R) = (1.607, 0.625) for the TE mode, and (Qfss,. Ro/R.)
It is instructive to examine the present results for perturbations
with the lowest mode numbers, i.e., (%,s,s') = (0,1,1), particularly
for a beam-filled waveguide with Ranc = 1. 1In this limit, from Fig. 1(a),
we obtain Gls'(ul,l) = 0.4 for the TE mode, and st'(sl.l) = 0,045 mode.
We therefore conclude that the TE mode polarization is tne most unstable.
. C
Multiplying st'(ul,l) = 0.4 by Q[ss'/cts' 4,2 in Fig. 3(a), the
coupling coefficient is given by lel = 1.7. Assuming zero axial
momentum spread (o = 0) and short axial wavelengths (kgﬁz >> 1),

the TE mode dispersion relation in Eq. (62) can be approximated by

2
2 w
o RY _ ) 2 _ Ypb\ _ 22,2
2 (k + nkg Lo) J [w= (k+ nko)Vb] vz 3.4p wpbko .
b (68)

for the (&,s,s') = (0,1,1) perturbation and ROIRc = 1. Equation (68)
is similar in form to the result obtained by Davidson and Uhm3 for
a uniform density beam with infinite cross section. In particular,

the constant numerical factor on tne right-hand side of Eq. (68) is

equal to 3.4, whereas in Ref. 3 the constant numerical factor is equal to 8.

28
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Finally, we have investigated detailed stability properties
by solving the dispersion relations in Egs. (62) and (63) numerically
for a broad range of system parameters. Defining the normalized

Doppler-shifted eigenfrequency by
Q= f{w- (k+ nko)Vb]/koc , (69)

we calculate the nurmalized growth rate Q. = 1m) from Eqs. (62) and

i

(63). Shown in Fig. 4 are plots of the normalized growth rate Qi

versus (k + nko)/k0 for (L,s,s') = (3,2,1), kORc = 10, Y, < 10, v/yb =
0.02, and A2 = 0.01, with (a) ROIRC = x31/a4,2 for the TE mode, and
(b) RO/RC = x31/84,2 for the T mode. For these optimized choices of
RO/Rc’ the instability growth rate for the TM modeis comparable to
that for the TE mode. Moreover, the growth rate is reduced substantially
by introducing a small amount of axial momentum spread (A/ybmc v 0.01).
We conclude this section by pointing out two areas in which the
analysis can be extended. First, the restriction to very short;wave—
length perturbations [Eq. (48)] can be removed in a relatively ;traight-
forward manner. Second, paralleling the self-consistent theoretical
formalism developed in previous studies,8 the stability analysis can

also be carried out without making the approximation that the transverse

perturbations are represented by the vacuum waveguide fields.

29/30
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V. CONCLUSIONS

In this paper, we have examined the free electron laser instability
for a solid relativistic electron beam propagating in the corbined
transverse wiggler and uniform axial guide field given in Eq. (1).

The analysis was carried out within the framework of the linearized
Vlagsov-Maxwell equations. The equilibrium (Sec. 1I) and stability (Secs.
111 and IV) properties were investigated in detail for the choice of
distribution function in which all electrons have the same value of

the linear combination of transverse and helical invariants, C; - Zybmmbch,
and a Lorentzian distribution in the axial invariant Cz [Egs. (5) and
(18)). One of the most important conclusions of this analysis is that

the maximum instability growth rate i;r a solid electron beam is comparable
to that of a1 hoilow beam vitn siwsiar pnrmuuters.a ltoreover, it is also
found that the maximum growth rate occurs at a value of RO/Rc corresponding
to Rg/R, = xls'/°2+1,s for TL wode perturbations, and RO/RC = xls'/59+1,s
for TM mode perturbations. For these optimized values of RO/RC, the
instability growth rate for the TM mode is comparable to that for the TE
mode. l!Moreover, the growth rate is substantially reduced by introducing

a small amount of axial momentum spread (A/ybmc v 0.01).
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FIGURE 3  PLOTS OF (a) Qf,¢+/Gog' AND (b) QM /G
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| 0.0I5 -
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FIGURE 4(a) PLOTS OF NORMALIZED GRWTH RATE £, VERSUS (k + nkg)/kg FOR (2,85} = (3,2,1), 7, = 10,
viyy, = 0.02, AND A2 = 0.01, WITH (a) Rg/R, = x31/04 2 FOR THE TE MODE.
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APPENDIX A

LONGITUDINAL PERTURBATIONS FOR THE FREE ELLCTRON LASER INSTARTLITY

In this Appendix, we investigate properties of the longitudinal
perturbations about an electron beam propagating through a cylindrical
waveguide with radius Rc. In the present analysis, it is assumed that

the perturbations have short wavelength with

2

Iqil = |(k + nky)® - w2/c2| >> lle , (A.1)

which can also be expressed as

2,2

R? = a1+ v sah kR s (A.2)
nRo AL PLALA : .

for the frequencies of interest for free electron laser applications.
Equation (A.2) is easily satisfied in parameter regimes of present

experimental interest. In the limit of a small wiggler amplitude (A -+ 0),

we obtain the longitudinal eigenvalue equation,

2
13 3 _ 4 _ 2):i(n)
( rar " ar r2 qn) Ez,l(t)
(A.3)
2 , 2 2+(n)
L (w b/\rb)qnl:z’,L(r)»(n0 - 1)

. 3,27
[w- (k + nko)vb + 1‘k + nkOIA/ybm]
from Eqs. (33), (45), (46), and (56). 1In Eq. (A.3), €(x) is the Heaviside

step function defined in Eq. (52), and w2 = 4vc2/beg is the plasma-

pb
frequency-squared.

For notational simplicity, we define

set(0) : £ (o) . (A.%)

2
Inside the electron beam (0 <r <« Ro), Eq. (A.3) can be expressed as1

T

A aP YA bt nd
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2
1a 3 _ 2 2 ¢ - <
(r“rar r2+T)60(r) 0, 01 <Ry, (A.5)
where
w2 /Yz
2_ 2 pb’'b
T = 32" 1) . (A.6)

lw = (k + nky)V, + ]k + nky[8/y;m

Outside the electron beam (R0 <r < Rc), Eq. (A.3) reduces to the free-

space eigenvalue equation

22 2
‘r—z-qn)éo(r)=0. Ry <1 <R i (A7)

lw
|w

—~
"

r

Q
Q

T r

The solution to Eq. (A.5) that remains finite at r = 0 is

80 (r) = ¢,3,(TR) , 0 <r <Ry, (A.8)

where Jl(x) is the Bessel function of the first kind of order £, and

¢

0 >>1 in Eq. (A.2), we can express the

. . 2
g 18 a constant. Noting an

solution to Eq. (A.7) as
2 - -
béout (T) c[Il(an)Kl(anc) Kh(an)lz(qnnc)]’ Ry<r :~Rc'(A'9)

where Il and Kl are modified Bessel functions of order £, and C is a

constant.
The boundary conditions on 6¢%r) at the surface of the electron

beam are given by

L o faal
[6¢in]r'R0 [6°out]r=R0 ’ (A.10)

and

- (¥ x)el, )

]
[o /ar)6¢1n] ollt . (A.11)

r-Ro r=E0

from Eq. (A.3). Substituting Eqs. (A.8) and (A.9) into Egs. (A.10) and

(A.11) gives




T v e r——— vﬂ
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J;(TR )
TR, — == = h(q )
0 JE(TRO) n
(A.12)
1 » - ,t
: qR Iﬂ(anO)ki(anc) Il(anc)kl(anO)
n 0 Il(anO)KE(anc) - Il(qnﬂc)kg(ano)

where the "prime" notation denotes derivative with respect to the complete
. ' -

argument of the Bessel function, e.g., Jz(TRO) [dJE(x)/dx]ngRo. The

expression for the longitudinal wave admittance h(qn) in Eq. (A.12)

can be simplified in several limiting cases, including short wavelength

perturbations with |qiRg| >> 1. 1In this case, h(qn) can be approximated by
h(qn) = -anocothqn(Rc - Ro) , (A.13)

and Eq. (A.12) reduces to
1
JE(TRO)

~TR0 327?§3$ = anOcothq"(Rc - RO) . (A.14)

Lvidently, the right-hand side of Eq.(A.14)is a very large positive
number, and the lowest-order lonpitudinal dispersion relation (for A - 0)

can be approximated by
JQ(TRO) =0, (A.15)
where T is defined in Eq. (A.6). It follows from Eq. (A.15) that

2.2 _ 2 .
T Ro 52,5, , s 1, 2, ..., (A.16)

where Bl s’ is the s'th zero of Jz(x) = 0. In this regard, Egqs. (A.8)
» .

and (A.9) can be approximated by

¢, 3, (B, .T/R) , O <r <R,
£,8'72 1,8 0 0 (A.17)

s¢*(r) =
o, otherwise ,

where 31 s is a constant. Substituting Eq. (A.6) into Eq. (A.16)
»

A-3

kg vy, 1t ol




and making use of Eq.

w -~ (k + nko)Vb + 4 —
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(A.2), we obtain the longitudinal dispersion relationm,

2 2
|k + nk0|A w
—| - R, o, (A.18)
3 2
" Yo

where the term proportional to Bi s has been neglected.

A-4
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